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In this Chapter I would like to describe the methods that are used for phase and group-delay

estimation, and to outline the expected performance of each technique. The methods of

phase estimation that are described here have been applied (with variations) at the Mark III

interferometer (Shao et al., 1988), the Palomar Testbed Interferometer (PTI) and the Navy

Prototype Optical Interferometer (NPOI). Likewise, the methods of group-delay tracking

to be described here, although different in each case, have been applied at PTI (Colavita

et al., 1999), NPOI (Benson et al., 1998), the Sydney University Stellar Interferometer

(Davis et al., 1995; Lawson, 1995), and the Grand Interféromètre à 2 Télescopes (Koechlin

et al., 1996).

There are other methods of fringe detection and measurement, which do not rely on phase or

group delay estimation as described in this chapter. These other approaches are methods

of coherence envelope tracking and detect the location of the fringe packet by sweeping

or scanning the delay line back and forth through the entire fringe envelope, with a throw

several times larger than the coherence length. Such approaches have been used successfully

at SUSI∗ (Davis et al., 1999), COAST (Baldwin et al., 1994), and IOTA (Traub, 1998).

The advantage of envelope tracking is that it is straightforward to implement. The sweep

is generally made much larger than the coherence envelope and therefore the envelope need

only be roughly centered in the sweep. If the baseline solution is accurate and the path

variations introduced by the atmosphere are small, corrections to the tracking position

∗The method used at SUSI, described by Davis et al. (1999), does not use a fast sweep but instead uses

steps through the coherence envelope and a method of fringe measurement first described by Tango and

Twiss (1980).
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Figure 8.1: Group delay as a function of time observed with PTI in conditions of poor
seeing. Several parallel fringes are visible in the plot, illustrating the behavior of the
phase-tracking algorithm as it makes mistakes in identifying the central fringe. This
information can be used to correctly unwrap the phase during post-processing of the
data.

may be made infrequently—perhaps every few minutes. However, the fringes are only

sampled for a fraction of the observation time, and the process may be labour intensive,

time consuming, and inefficient.

In the following I will describe methods of phase and group delay estimation that allow the

fringes to be observed on or near the peak of the coherence envelope. Methods of envelope

tracking will not be considered further.

8.1 Motivation

All visibility measurements must be made in such a way that calibration of the data is

later possible by observing unresolved reference sources. The visibility loss experienced by

fringes observed in source and calibrator should be the same in each case, and fringes should

therefore be measured at the same fixed position on the coherence envelope. Without some

form of servo control the coherence envelope would move during an observation, because

of errors in the astrometric model and random path variations (∼10 µm rms per meter of

baseline) introduced by the atmosphere. If the observations are to be made always at the

same place on the coherence envelope (e.g. at the peak) some form of phase or group-delay

tracking must be used.
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Astrometric interferometers estimate the relative angular position of celestial objects through

accurate measurements of the delay required to obtain fringes on each source. All astro-

metric interferometers currently use a combination of phase and group delay estimation to

provide accurate delay measurements. Phase estimation is used to provide the highest res-

olution, and group-delay estimation is used so that the phase is unwrapped with reference

to the peak of the coherence envelope, as illustrated in Figure 8.1.

Imaging interferometers that estimate closure phase must be capable of simultaneous phase

measurements over at least three baselines. In practice this is accomplished by imposing

a different spatial or temporal modulation to each baseline and then estimating phase

through Fourier techniques or phase-tracking algorithms. Although phase tracking is not

always necessary for imaging, as shown for example by the COAST interferometer (Baldwin

et al., 1994), phase-estimation methods are nonetheless used to estimate closure phase.

8.2 Phase and Group Delay

The optical path difference between the combined wavefronts in an interferometer can be

expressed in terms of the indices of refraction of the different media ni and the path lengths

in each arm of the interferometer that the light traverses, x1i and x2i:

x(κ) =
K

∑

k=0

(x1i − x2i)ni(κ) (8.1)

where κ = 1/λ is the spectroscopic wavenumber at a wavelength λ.† If we now make the

change of variables xi = x1i − x2i, and assume that we have a vacuum delay x0 and K

dispersive media, we have that the phase of the fringes can be given by

2πκx(κ) = 2πκ

[

x0 +

K
∑

k=1

xini(κ)

]

(8.2)

In general the optical path-difference x is wavelength dependent, because the light that

travels to the beam combiner from each arm of the interferometer may have passed through

different paths in vacuum, and different dispersive pathlengths in air and glass: at shorter

wavelengths the index of refraction is higher, light travels slower through the media, and

the optical path-difference is larger. If we consider an interferometer that only admits a

restricted bandwidth of light, there is light of a particular wavelength that arrives “first”

and one that arrives “last,” and we can speak of the ensemble of waves as traveling as a

†Here I distinguish between the spectroscopic wavenumber, κ = 1/λ, and the wavenumber that is cus-

tomarily used in optics, k = 2π/λ. This distinction is suggested by Born and Wolf (1980) and will be used

throughout this chapter.
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group or packet whose mean progress is described by a group velocity. The group delay is

proportional to the rate-of-change of phase as a function of wavenumber, evaluated at the

center of the band.

group delay (κ0) =
d

dκ
κx(κ)

∣

∣

∣

∣

κ0

(8.3)

= x0 +

K
∑

k=1

d

dκ
κxi ni(κ)

∣

∣

∣

∣

κ0

(8.4)

If we have simply a vacuum path-difference, x(κ) = x0, the group delay is independent of

wavelength, and the fringe phase is a linear function of wavenumber.

A phase-tracking algorithm would seek the location of a position of constant phase, where

the fringe visibility is highest. A group-delay tracking algorithm would seek a location of

constant group delay—where the number of fringes across the bandwidth is maintained

constant.

A long-baseline stellar interferometer must typically compensate for a vacuum delay of

several tens of meters and random variations of air path of several tens of microns rms. In

principle, all ground-based interferometers should use vacuum delay lines, but many do not

either because of funding restrictions or the perception that longitudinal dispersion is less

of a problem at infrared wavelengths. Examples of fringes distorted by longitudinal disper-

sion have been presented by Lawson (1997) and include an illustration of the wavelength

dependence of group delay. If the dispersion is uncompensated then fringes will appear

to have a reduced visibility and fringes in different wavelength bands will arrive delayed

one from the other, making it impossible to record fringes in two or more bands simultane-

ously. The effects of dispersion have been studied by numerous authors (Lacasse and Traub,

1988; Tango, 1990; ten Brummelaar, 1995; du Foresto et al., 1995; Lawson and Davis, 1996;

Léveque et al., 1996; Davis et al., 1998; Daigne and Lestrade, 1999) and dispersion com-

pensators have been implemented, mostly on an experimental basis, at the I2T, SUSI, and

PTI. Dispersion compensators will be used with the GI2T/REGAIN interferometer, the

Keck Interferometer, the VLTI, and the CHARA Array—all of which use air delay lines.

It is interesting to note that if dispersion is present the fringe phase at the peak of the

coherence envelope (at zero group delay) will not necessarily be zero. As the delay line

introduces an increasing dispersive air path, the brightest fringe in the coherence envelope

(the central fringe) will move away from the position of zero group delay. When it has

moved more than half a wavelength, the fringe that followed it will be closer to the peak

of the envelope and will become the new central fringe. The position of zero-phase and

zero-group-delay will appear to move with respect to each other in a sawtooth pattern as

a function of delay.
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8.3 Model of the Fringe

The intensity of a fringe pattern can be expressed (cf. Chapter 7, Born and Wolf 1980) as

follows:

I = I1 + I2 + 2
√

I1I2 |γ12| cos(φ12 − ϕ), (8.5)

where

ϕ =
2π

λ
(s2 − s1). (8.6)

λ is the wavelength of the light, I1 and I2 are the intensities of the light in each arm of the

interferometer, and γ12 is the complex degree of coherence with modulus |γ12| and argument

φ12 − ϕ, where ϕ arises from the path difference, and φ12 contains information about the

source. The parameters s1 and s2 are two optical pathlengths. The contrast, or visibility,

of the fringes is the ratio of the fringe amplitude to the total background illumination,

V =
2
√

I1I2 |γ12|
I1 + I2

. (8.7)

If we make a change of variables introducing the spectroscopic wavenumber κ = 1/λ, letting

Is = 2
√

I1I2, Ib = I1 + I2 − Is, (8.8)

and

x = (s2 − s1), (8.9)

then we have‡

I(κ, x) = Is

[

1 + |γ12| cos(2πκx− φ12)

]

+ Ib. (8.10)

The substitution of x = s2 − s1 in this case is to indicate that the phase offset is entirely

piston phase, with no tilt component. Under conditions where I1 = I2 then the visibility

of the fringes is the modulus of the complex degree of coherence,

V = |γ12|. (8.11)

A source that is non quasi-monochromatic may still be treated as such if it is observed with

an instrumental bandwidth that is sufficiently small. Bright fringes will occur wherever the

path difference x is an integer multiple of 2π at most wavelengths. This will be so at all

wavelengths only when x is zero and when the dispersion is the same in each arm of the

interferometer. The reduction in the fringe visibility at increasing values of x is described

by the coherence envelope.

‡Although not explicitly indicated here, a phase offset should be introduced to distinguish between fringes

that are produced by light traveling single or double-pass through the beam-splitter. The offset phase is π/2

if the beam-splitter is used in the normal way: two beams of starlight enter the beam-splitter from opposite

sides and are combined. However, the phase offset is 0 if the source of light is an artificial star that shines

out through the beam-splitter, sending two beams out which are then autocollimated and returned. This is

discussed at greater length by Traub in Chapter 3 (Section 3.2.3).
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8.3.1 Coherence Envelope

If we observe fringes using a finite bandwidth (ie. not quasi-monochromatic), the recorded

intensity is the integral of I(κ, x) over wavenumber, weighted by a filter function W (κ) that

describes the bandpass.

I(κ̄, x) =

∞
∫

−∞

W (κ− κ̄) I(κ, x) dκ, (8.12)

where κ̄ is the center of the passband.

The filter function includes both the shape of the bandpass and the frequency response of

the detector; it has values that are large within the bandwidth, and near zero outside. The

result of this averaging is to reduce the sensitivity of the interferometer to fringes of large

delay: when the bandwidth ∆κ partially spans a fringe (in the wavenumber domain κ) then

the visibility appears to be reduced. This is simple to illustrate.

Let us introduce a change of variables, such that κ′ = κ − κ̄, and perform the integration

in Equation 8.12 with respect to κ′. If we insert Equation 8.10 into Equation 8.12, ignore

the background Ib for now, and rearrange the terms we have

I(κ̄, x) = Is [ 1 + |γ| cos(2πκ̄x− φ)

∞
∫

−∞

W (κ′) cos(2πκ′x) dκ′

− |γ| sin(2πκ̄x− φ)

∞
∫

−∞

W (κ′) sin(2πκ′x) dκ′ ] (8.13)

where the subscripts have been dropped from γ12 and φ12. Now if we define Ω(x) as the

Fourier transform of W (κ), then we have:

Ω(x) = |Ω(x)| ejφΩ =

∞
∫

−∞

W (κ)ej2πκx dκ, (8.14)

and therefore

|Ω(x)| cos φΩ =

∞
∫

−∞

W (κ) cos(2πκx) dκ, (8.15)

|Ω(x)| sinφΩ =

∞
∫

−∞

W (κ) sin(2πκx) dκ. (8.16)

Equation 8.12 may therefore be written in the form

I(κ̄, x) = Is

[

1 + |γx| cos(2πκ̄x− φ + φΩ)

]

(8.17)

where the apparent visibility |γx| is the product of the true visibility and the modulus of

the Fourier transform of the filter function, evaluated at the current delay:

|γx| = |γ| |Ω(x)| . (8.18)
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The transfer function Ω(x) describes the coherence envelope. If W (κ) is symmetric then

Ω(x) is real valued, φΩ = 0, and only at zero delay, where the envelope is at its peak, is the

true visibility observed.

A Rectangular Bandpass

If a detector has a rectangular bandpass then its coherence envelope would resemble a sinc

function:

W (κ) =

{

0, |κ| > ∆κ/2

1, |κ| < ∆κ/2
and Ω(x) = |∆κ| sinπx∆κ

πx∆κ
. (8.19)

If a bandwidth of ∆λ is used at a wavelength λ, the same interval expressed in wavenumber

is as follows:

∆κ =
1

(λ−∆λ/2)
− 1

(λ + ∆λ/2)
, therefore ∆κ =

∆λ

λ2 − (∆λ/2)2
. (8.20)

If we assume that the fractional bandwidth is very small we can ignore the second term in

the denominator.

∆κ ' ∆λ

λ2
. (8.21)

The sinc function is characterized by the location of its first zero crossing, where x = 1/∆κ.

This distance can be thought of as the coherence length of the starlight under observation.

The Coherence Envelope and the Color of Fringes

Figure 8.2 illustrates in a more intuitive way how the coherence envelope would become

narrower when fringes are observed over an increasingly large bandwidth, which encom-

passes many different colors (wavelengths). Fringes from a Young’s double-slit experiment

are shown in Figure 8.2(a), as seen through filters at different wavelengths. Figure 8.2(b)

shows the corresponding fringe pattern if all the colors are viewed simultaneously. Note

that as you increase the path-difference and move further away from the central fringe,

either left or right from the center of the page, the fringes become less and less distinct

because the fringes at each color cease to add constructively. The larger the range of colors,

the sooner the fringes disappear as the pathlength is increased.

8.3.2 Channeled Spectrum

Fizeau and Foucault (1845) were the first to point out that fringes are still observable in

the spectrum of interfered light, even when the path differences were so large that the

white-light fringes have completely vanished. Suppose what you observed was a pattern

similar to the one illustrated in Figure 8.2(b) and you somehow separated the different
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(a)

(b)

(c)

Figure 8.2: Narrow band and white-light fringes: (a) Fringes from a Young’s double-
slit experiment, shown for seven different wavelengths or colors of light. (b) The cor-
responding “white-light” fringe after summing together the different colored fringes.
(c) A cross section of the fringes at each color and the corresponding white-light
fringe. Note that the color-wavelength relationship is not to scale. [After A.A. Michel-
son, Light Waves and Their Uses (University of Chicago Press: 1902), Plate II.]
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colors to obtain the fringe patterns of Figure 8.2(a). You can now see fringes at large path

differences (left and right in the figure) where none were previously visible. Which is to

say, if we disperse the light in a spectrometer so that a bandwidth ∆κ is separated into

M smaller bands of width ∆κ/M , the coherence length for fringe detection changes from

1/∆κ to M/∆κ; it becomes M times larger. Fringes observed in dispersed light have been

termed Edser-Butler fringes, or fringes of equal chromatic order, and produce a spectrum

that is channeled with fringes (Steele, 1987).

pinhole

laser

detector

piezo
mirror

beam
splitter

prism

fixed
mirror

lens

light
source

10  microns

20  microns

700

Wavelength (nm)

750

Wavelength (nm)

800

Wavelength (nm)

850

Wavelength (nm)

900

Wavelength (nm)

Figure 8.3: Layout of a Michelson interferometer used to produce channeled spectra.
Simulations of channeled spectra are shown for path-differences of 10 and 20 µm,
using a prism of BK7 glass.

We can re-write Equation 8.17 as a channeled spectrum (here arbitrarily setting φΩ to zero)

in the following way:

fk(x) = Ik

[

1 + |γk| cos(2πκ̄kx− φk)

]

, (8.22)

where k is an index number that counts the pixels across the spectrometer; such that at

pixel k the wavelength and wavenumber are λk and κk respectively, Ik is the intensity of

the stellar spectrum, |γk| is the fringe visibility amplitude, and φk is the fringe phase.

As can be seen in Equation 8.22 the number of fringes in the spectrum across a given

bandwidth is directly proportional to the optical path-difference. If p fringes are counted
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Figure 8.4: Channeled spectra produced at COAST using an artificial star. Various
examples are shown as the delay line is stepped from one side of path-equality to
the other.
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between wavelengths λmin and λmax, then we have

p =
1

2π

[

2πx

λmin

− 2πx

λmax

]

, (8.23)

and therefore

x =
p

∆κ
, (8.24)

where

∆κ =

[

1

λmin

− 1

λmax

]

. (8.25)

The optical path-difference can therefore be determined simply by estimating the number

or frequency of fringes in the channeled spectrum.§ Figure 8.3 shows a laboratory Michelson

interferometer with a prism on its output. Simulated channeled spectra, as would be seen

on the detector, are illustrated. Figure 8.4 shows a time sequence of actual channeled

spectra recorded with a CCD camera as the path-difference is stepped from one side of zero

path-difference to the other.

Numerous applications for channeled spectra have been described in the literature, including

their use for analyzing spectroscopic measurements (Edser and Butler, 1898), for measuring

absolute phase shift and dispersion (Sanderman, 1971), and for the analysis of thin films

(Feldman, 1984).

8.4 Methods of Tracking Fringe Phase

Let us now return to a description of interference fringes, and look at the approaches that

have been used to measure fringe phase with stellar interferometers.

All methods of phase-measurement interferometry involve a modulation of the fringes. Stel-

lar interferometers that measure phase typically use a temporal modulation of the optical

path-difference to sample the fringe. The modulation frequency is chosen fast enough so that

(for the ground-based instruments) atmospheric path-fluctuations are effectively frozen.

We can rewrite the equation of the fringes, Equation 8.10, using the trigonometric identity

cos(a− b) = cos(a) cos(b) + sin(a) sin(b), (8.26)

and express the fringe pattern as follows:

I(κ) =
1

τ
[N + X cos(2πκx) + Y sin(2πκx)] , (8.27)

where κ = 1/λ, τ is the measurement period, and

N = τIs, (8.28)

X = τIs |γ12| cos(φ12 − φ0), (8.29)

Y = τIs |γ12| sin(φ12 − φ0), (8.30)

§In this description, the number of fringes in the channeled spectrum only determines the distance from a

zero group-delay, but not whether the offset is positive or negative. At least two measurements of channeled

fringes at different delays are required to remove the ambiguity in sign.
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where we have assumed the background Ib is identically zero. It can now be seen that with

at least three measurements at different known positions of x we can solve for the three

fringe parameters N , X, and Y , and that with many more measurements we can improve

the accuracy of the estimate by applying a least-squares algorithm. The numerous different

approaches to phase measurement interferometry are described in detail by Creath (1988).

In the following it will be assumed that if the total measurement period is τ , and that if

M measurements are made of the fringe, they are each made over a time τ/M .

8.4.1 Phase Tracking with Four Quarter-Wavelength Steps

For the purpose of illustration, let us assume the pathlengths in the interferometer are

stepped in quarter-wavelength steps. The fringe is given, as above, by

I(κ, n) =
1

τ
[N + X cos(2πκxn) + Y sin(2πκxn)] , (8.31)

and the pathlength modulation is

xn =
n

4

1

κ0

, n = 0, 1, 2, 3 (8.32)

where λ0 is the wavelength of the fringe measurement, ie: κ0 = 1/λ0. The four measure-

ments, each integrated for a time τ/4, can be written

A = (N + X) /4, (8.33)

B = (N + Y ) /4, (8.34)

C = (N −X) /4, (8.35)

D = (N − Y ) /4, (8.36)

and these can be reduced to the following three equations

A + B + C + D = N, (8.37)

A− C = X/2, (8.38)

B −D = Y/2. (8.39)

We now arrive at a simple expression for the phase,

φ12 − φ0 = tan−1

(

B −D

A− C

)

. (8.40)

The way that the A, B, C, and D counts are combined to produce phasors depends both

on the form of the equation describing the fringe and the initial phase of the sweep—it is

therefore not surprising that there are a confusing number of correct but somewhat different

descriptions of the four-bin algorithm.
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8.4.2 Phase Tracking with a Linear Pathlength Sweep

No stellar interferometer actually uses a phase-stepping approach. In practice the path-

length is not stepped, but is varied as a triangle or sawtooth wave with a peak-to-peak

amplitude of one wavelength, λ0 = 1/κ0, or some integer number of wavelengths. Here we

will consider only the case of a single-wavelength sweep. The following derivation is also

described in a slightly different way by Wyant (1975, Equation 15ff) and by Colavita (1985,

Chapter 4).

During the course of one cycle of duration τ , the photon counts A, B, C, and D are each

recorded over a time interval of τ/4. The measurement comprises separate integrations

which are each an average across part of the total sweep,

1

∆x

∫ xn+1

xn

I(κ, n) dx where ∆x = xn+1 − xn. (8.41)

If we have four separate integrations each across a quarter wavelength, then we set ∆x =

1/(4κ0). We will also set the boundaries of the integration so that the total sweep is one

wavelength, symmetric about a zero path-difference:

xn =
n

4

1

κ0

− 3

4

1

κ0

, n = 1, 2, 3, 4, 5. (8.42)

It is straightforward to perform the integrations described by Equations 8.41, 8.42, and

8.27. We have that A is bounded by (x1, x2), B is bounded by (x2, x3), C is bounded by

(x3, x4), and D is bounded by (x4, x5). We also have that

∫ xn+1

xn

cos(2πκx) dx =
1

2πκ
[sin(2πκxn+1)− sin(2πκxn)] , (8.43)

and
∫ xn+1

xn

sin(2πκx) dx =
1

2πκ
[cos(2πκxn)− cos(2πκxn+1)] . (8.44)

We can now write the A, B, C, and D as follows:

A =
N

4
+ X

1

2π
[sin(−π/2) − sin(−π)] + Y

1

2π
[cos(−π)− cos(−π/2)] , (8.45)

B =
N

4
+ X

1

2π
[sin(0) − sin(−π/2)] + Y

1

2π
[cos(−π/2)− cos(0)] , (8.46)

C =
N

4
+ X

1

2π
[sin(π/2) − sin(0)] + Y

1

2π
[cos(0)− cos(π/2)] , (8.47)

D =
N

4
+ X

1

2π
[sin(π)− sin(π/2)] + Y

1

2π
[cos(π/2) − cos(π)] , (8.48)

which may be simplified to

A =
N

4
+

1

2π
(−X − Y ) , (8.49)

B =
N

4
+

1

2π
(X − Y ) , (8.50)
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C =
N

4
+

1

2π
(X + Y ) , (8.51)

D =
N

4
+

1

2π
(−X + Y ) . (8.52)

(8.53)

We can now write
B −D

A− C
=

Y −X

X + Y
. (8.54)

Dividing through by X and using the relationship Y/X = tan(φ12 − φ0), we have

B −D

A− C
=

tan(φ12 − φ0)− 1

1 + tan(φ12 − φ0)
. (8.55)

Using the trigonometric relationship

tan(a− b) =
tan a− tan b

1 + tan a tan b
, (8.56)

we have finally that

tan−1

(

B −D

A−C

)

= φ12 − φ0 −
π

4
, (8.57)

φ12 − φ0 = tan−1

(

B −D

A− C

)

+
π

4
. (8.58)

The phase shift of π/4 corresponds to a lag of half an integration bin, as would be expected.

Although the minimum number of bins that one could use would be three, algorithms with

more than four bins are also in use. For example, the Navy Prototype Optical Interferometer

uses an eight-bin algorithm where the real and imaginary components of the phase are

calculated as follows (Benson, 1998):

cos(φ) ∝ (A−E) + 0.5
√

2(B −D − F + H),

sin(φ) ∝ (C −G) + 0.5
√

2(B + D − F −H),

with the integration bins now extending from A through H. The phase offset in this case

would be π/8.

Cassaing et al. (2000) have suggested that a servo that only seeks to find the zero-phase

position, and does not share data with the science instrument, need only estimate the sine

phasor, as that would suffice for a zero-seeking servo.

8.4.3 Simultaneous Phase Measurements at Several Wavelengths

Astrometric interferometers often make phase measurements at several different wave-

lengths simultaneously. The actual modulation is chosen to be one wavelength at the

longest wavelength where data is measured. For data at shorter wavelengths, the data ac-

quisition is halted briefly when the modulation exceeds one wavelength, and then resumed

when it returns. The boundaries of the A, B, C, and D bins are re-defined according to

the timing appropriate at each wavelength.
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8.4.4 Triangle vs Sawtooth Modulations

A sawtooth waveform is preferable when the detector being used to record the fringe has

appreciable readout noise.

A triangle wave produced by a moving piezo will have non-linearities that are different

in its up and down-strokes. These non-linearities will produce a bias in the fringe phase

measurement—a phase measured using an up-stroke will have a different bias than a phase

measured using a down-stroke. The problem arises that all phase estimates should have the

same bias, so that phase-difference measurements (used for the astrometry) are unbiased.

At the Mark III interferometer, each phase estimate was made as an average between a

measurement made on the up-stroke and a measurement made on the down-stroke. All

phase estimates therefore had the same bias. In practice several cycles of up and down-

strokes were averaged if the atmospheric conditions permitted. Photomultiplier tubes were

used that photon-counted without incurring read noise.

At the Palomar Testbed Interferometer, the detector that is used is a NICMOS III detector.

It has very high read noise, and even with multiple non-destructive reads, the read noise

is about 12 electrons rms. Each phase estimate should use the absolute minimum number

of reads necessary, so that the highest signal-to-noise is achieved in each cycle. A sawtooth

waveform is therefore used. It has only an up-stroke, and so every phase measurement has

the same bias—and only four reads (one measurement of A, B, C, D) are used rather than

eight reads per phase estimate.

8.5 Methods of Tracking Group-Delay

Group-delay tracking has a very long history of use in stellar interferometry. Michelson

and Pease (1921) applied this technique to acquire fringes by eye with the 20-ft interfer-

ometer using a direct-view prism. Labeyrie (1975) used an identical approach when he

demonstrated that fringes could be acquired with two separated telescopes. The I2T inter-

ferometer acquired fringes this way up until about 1984, and the GI2T also routinely used

a direct-view prism up until about 1995.

The idea of applying this technique using photon counting detectors was no doubt obvious

to Labeyrie and was also suggested by Tango and Twiss (1980). The probable limitations

of group-delay tracking have been described by numerous authors since then. These in-

clude simulations for the IOTA interferometer performed by Nisenson and Traub (1987)

and Traub et al. (1990); simulations for the COAST interferometer performed by Buscher

(1988); signal-to-noise predictions for “photon-starved” operation with the Mark III inter-

ferometer (Shao et al., 1988); simulations for SUSI considering photon noise only (Lawson,

1995); and further simulations taking into account detector read noise (ten Brummelaar,

1997) and visibility fluctuations (Lawson et al., 1999). Simulations have also shown that
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with the use of a priori knowledge and Bayesian analysis methods that performance limits

could be further extended (Meisner, 1996; Padilla et al., 1998; Morel and Koechlin, 1998).

Channeled spectra were recorded by Kim (1989) using a PAPA camera at the Mark III

interferometer, although without implementing a servo loop. Similar observations were

carried out by the author (Lawson, 1994) at the Sydney University Stellar Interferometer,

along with observations of atmospheric path fluctuations seen in channeled spectra (Davis

et al., 1995). In 1994 the GI2T began to automate a low-bandwidth servo for pathlength

control using dispersed fringes (Koechlin et al., 1996). When the Palomar Testbed Inter-

ferometer was commissioned in 1995, it automated a method of group-delay tracking using

phasor measurements (Colavita et al., 1999), as did the NPOI at about the same time

(see for example Benson et al. 1998 and Hummel 2000). Future applications of group-delay

tracking with space-borne interferometers have been reviewed by Shao and Colavita (1992).

Approaches to Group-Delay Estimation

The group delay can be measured if the combined beams from an interferometer are dis-

persed in a spectrometer. The detected spectrum of the star will be channeled with fringes

whose number is proportional to the optical path-difference.

Approaches to group-delay tracking can be broadly classified according to the form of the

measurement and the type of data processing that is used. The measurement will be either

of a single channeled spectrum or of fringe phasors.∗

1. Channeled spectrum: single snap-shot of the stellar spectrum channeled with fringes,

but no pathlength modulation (e.g. Lawson 1995, with delay estimation from a trans-

form of real-valued data).

2. Multi-wavelength phasor measurements: fringe phasors recorded at multiple wave-

lengths, with pathlength modulation and methods of phase measurement interferom-

etry (e.g. Colavita et al. 1999; Armstrong et al. 1998, with delay estimation from a

transform of a series of complex numbers).

Approaches to Data Reduction

The approaches to data processing for group-delay tracking could include a cross-correlation

with an optimal filter, a least-squares modeling of the data, or a method of power spec-

trum analysis. Each of these approaches would use a simplified model of the fringe, based

on a small set of free parameters, such as fringe frequency, amplitude, phase, and some

∗This distinction is perhaps artificial. What I have called the fringe phasor approach, would be an n-bin

method of phase measurement applied at multiple wavelengths, for which n snap-shots of channeled spectra

are required. Although the sign of the delay cannot be determined from a single channeled spectrum, with

two or more channeled spectra recorded with a known shift in delay, as is the case with measuring the fringe

phasors, the sign is straightforward to determine.
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assumptions—including the relationship between detector pixels and wavelength on the

spectrometer. The utility of a particular technique depends on how well its assumptions

model the data. For instance, the fast Fourier transform (FFT) assumes that the data

represent a series of harmonically related sinusoids, but if there exists one sinusoid that

does not coincide with any of the harmonics, then the corresponding power spectrum will

be poorly reconstructed. Likewise, if the data were sampled at irregular intervals then the

sampling will also bias the group delay.

Advances in spectrum analysis have come from deriving power spectra from more accurate

assumptions, as is illustrated in the review paper by Kay and Marple Jr. (1981). Spectacular

improvements are possible if the proper model is chosen and a strong signal is present.

Unfortunately, all of these methods will fail when they are asked to derive power spectra

from processes that deviate from their model. This can occur in some cases simply by

adding observation noise to the data: at low signal-to-noise levels the resolution is often no

better than an FFT approach, and consequently many of the methods are ill adapted for

real-time processing. While it may be possible to determine the parameters that describe

the power spectrum, one must then recalculate the power spectrum numerous times to

locate the fringe peak, performing lengthy calculations. This has meant that only the

relatively prosaic FFT and several simple variations of least-squares methods have been

used in stellar interferometry. These will now be described.

8.5.1 Channeled Spectrum: Fast Fourier Transform

The most straightforward method is to use, despite its limitations, is the fast Fourier

transform. If we choose the FFT to process the data, we can cast the problem in terms of

an estimate of visibility using the Discrete Fourier Transform (DFT) with the same model

for the fringes used by Walkup and Goodman (1973).

If we can assume that wavenumber is mapped linearly onto the detector then an FFT

could be used. If the mapping is non-linear then a DFT would be used with the actual

wavenumbers corresponding to each sample in the spectrometer. Let us look at how an

FFT would be implemented.

Linear Mapping

If wavenumber κ is mapped linearly onto the detector coordinates ξ,

κ = c0ξ (8.59)

then it is straightforward to describe the sampled and transformed data, where we ignore

DFT artifacts in the following discussion. If the detector has M pixels of width ∆ξ, and

wavelengths from λmin to λmax mapped onto it, then we have

∆ξ =
1

Mc0

[

1

λmin
− 1

λmax

]

, or ∆ξ =
∆κ

Mc0

, (8.60)
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where ∆κ is the corresponding interval in wavenumber between λmin and λmax.

∆κ =
1

λmin
− 1

λmax
. (8.61)

The samples therefore lie at intervals of wavenumber given by

κm = κmin + mc0∆ξ, m = 0, 1, ...,M. (8.62)

The transform determines the spatial frequency of the fringes detected across the array,

that is to say p fringes per M pixels. We have therefore x = p/∆κ,

xp =
p

Mc0∆ξ
, p = 0, 1, ...,M/2. (8.63)

and p is an index of spatial frequency. Using the expressions for κm and xp we have

xκ =
mp

M
+

pκmin

∆κ
. (8.64)

If we can describe the fringes as in Equation 8.10:

I(m) = Is [1 + |γ| cos (2πκx + φγ)] + Ib, (8.65)

then inserting Equation 8.64 into 8.65 yields

I(m) = Is

[

1 + |γ| cos

(

2πmp0

M
+ φ

)]

+ Ib, (8.66)

where I(m) is the average intensity at the mth pixel of the detector,

φ =
2πpκmin

∆κ
+ φγ . (8.67)

The average total number of photons in each frame of data can be written

Mt = M(Is + Ib), (8.68)

where Is and Ib are the average stellar spectrum and background per pixel.

The Discrete Fourier Transform of the detected channeled spectrum would be

I(p) =
M−1
∑

m=0

I(m) exp

[

j
2πpm

M

]

, (8.69)

whose real and imaginary parts are

Re[I(p)] =

M−1
∑

m=0

I(m) cos

(

2πpm

M

)

=











M(Is + Ib) p = 0

M(Is|γ|/2) cos φ p = p0

0 otherwise

(8.70)

and

Im[I(p)] =
M−1
∑

m=0

I(m) sin

(

2πpm

M

)

=

{

M(Is|γ|/2) sinφ p = p0

0 otherwise
(8.71)
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where the factor M arises in performing the sum of the DFT, and the fringe amplitude

contains a factor of 1/2 because the DFT calculates both positive and negative frequency

components. These are complex conjugates, this being the transform of real-valued data,

and no information would be lost if we discarded the negative frequency half.

The features at ±p0 are not truly delta functions, but sinc functions whose nulls lie at the

locations of the other samples in the spatial frequency domain. For example, if the fringe

frequency was in fact somewhere part-way between the frequencies sampled by the FFT,

the convolution of the sinc function with the sampling would be more obvious.

Power Spectrum and Periodogram

It would be normal in most approaches of group-delay tracking to form a power spectrum

from the complex transform described by Equations 8.70 and 8.71 and afterwards integrate

the power spectra to improve the signal-to-noise ratio. From Equations 8.66 and 8.68 we

have that the amplitude of the power spectrum would be

|I(p)| =











Mt p = 0

M(Is|γ|/2) p = ±p0

0 otherwise

, (8.72)

Examples of fringe signals detected in channeled spectra are shown in Figure 8.5. These are

from internal fringes formed with SUSI used in autocollimation. Note the peak at the fringe

frequency (located between 30 and 70 cycles) and the large peak at the zero frequency.

Figure 8.5: Examples of the fringe signal from an FFT processing of channeled
spectra. Note the large signal at a spatial frequency of 0. The distances indicated
are relative positions of a piezo actuator and are not with respect to the location of
zero path-difference. [From Figure 10.7 of Lawson (1994).]
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Our ability to locate the spatial frequency of the peak is somewhat better than the “res-

olution” of the power spectrum. The resolution in the power spectrum is the smallest

separation in spatial frequency for which two unresolved line-features can be distinguished

as separate.† If the spectrum only has a single feature (the fringe) the problem reduces

to finding the best fit to the data of a known transfer function (i.e. a sinc function in the

case of a square bandpass). The peak can be located by padding the data with its mean

value before applying the DFT to produce samples of the power spectrum at shorter inter-

vals. The peak can be approximately located this way (it isn’t practical to infinitely pad

the data) and can be further determined by applying a three-point parabolic interpolation

around those samples nearest the peak.

An advantage of using power spectrum analysis is that it allows incoherent integration of

the fringe signal. It is the poor resolution in delay, when compared with phase-tracking

methods, that makes this approach attractive. Small changes in delay may be unresolved

in the power spectrum, making it possible to integrate numerous noisy power spectra and

to thereby improve the sensitivity. Group-delay tracking with the FFT has been seen as

particularly suited to low-light-level conditions in which methods of phase tracking would

fail.‡

The methods of phase measurement require a modulation, and consequently the fringes are

very slightly blurred in each sample—the fringes move by λ/4 per sample, reducing the

fringe visibility by ∼10%. If we are processing a single channeled spectrum as described

here without modulating the delay line, the sensitivity for fringe detection is slightly better

in comparison.

A significant drawback of this approach is that without some subtle changes to the data

processing, it is difficult to track fringes at zero delay. Because in each cycle we only measure

a single channeled spectrum we cannot determine the sign of the delay, making this method

a poor candidate for implementation as a zero-seeking servo. Furthermore, to avoid the

fringe signal being buried in the low spatial frequency profile of the stellar spectrum, the

zero-frequency signal must be subtracted in each frame. This is somewhat complicated

because of variations in the intensity of the stellar spectrum due to scintillation.

Non-Linear Mapping

A problem that is common to all implementations of group-delay tracking is that the map-

ping from wavenumber to pixel number will most likely not be linear. Most spectrometers

†The resolution is inversely proportional to the total bandwidth detected by the array, and the DFT

produces estimates at intervals in delay of ∆x = 1/∆κ up until a cut-off of x = ±M/(2∆κ), corresponding

to a distance of half the coherence length.
‡This comparison is only valid if we assume that the sensitivity and noise characteristics (dark current

and read noise for example) are the same for the detectors used in each approach.
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use either a prism or a grating, neither of which have dispersions that are constant in κ.§

Consequently the distance between fringes will change throughout the detected spectrum,

and the fringes will be partly stretched or compressed. This “chirp” means that although

the number of fringes would be the same, the associated frequency is more difficult to

identify. The Fourier transform yields a fringe frequency, not a number-of-fringes. The

transform of the fringes is therefore not a delta function and the peak is broadened with

its height reduced. For instance, if the spacing between fringes doubles from one edge of

the detector to the other, then the peak would be spread between these two frequencies.

This effect is more severe the more fringes are present: at larger path differences the peak

becomes progressively broader and lower in height. It becomes more difficult to detect the

peak in the presence of noise, and the broadening means that the peak is less well defined.

Careful calibration of the wavelength scale of the detector along with the use of a discrete

Fourier transform is required to overcome these losses. The effects of longitudinal disper-

sion within the interferometer must also be understood and accounted for, otherwise the

sensitivity of tracking will be degraded, sometimes in unexpected ways (Lawson and Davis,

1996).

8.5.2 Channeled Spectrum: Lomb-Scargle Periodogram

One of the disadvantages of the FFT approach is that the periodogram is not normalized in

a way that allows thresholding against noise. It is therefore difficult to judge the significance

of a peak in the power spectrum relative to the noise. A better method would be a power

spectrum derived from a least-squares fit to the data. This would then give us some measure

of the residuals and goodness of the fit.

The Lomb-Scargle periodogram, discussed by Press et al. (1992), is such an approach. The

advantage of this method is that it normalizes the periodogram (power spectrum) so that

it is possible to ignore noise peaks below a set threshold. Although it appears to be a

computer intensive approach, W.J. Tango at the University of Sydney has implemented it

for real-time fringe tracking with a CCD detector.

Because the Lomb-Scargle approach requires that the data sets be real-valued only, I have

not yet seen how it could be adapted to process fringe phasors.

8.5.3 Channeled Spectrum: Least-Squares Fit

Traub et al. (1990) describe a method of group-delay tracking which uses a cross-correlation

of the data with model functions. It is assumed that a family of functions exist which will

closely fit the data providing certain parameters are adjusted. It follows that if these

parameters are chosen correctly then it will minimize the least-squared difference between

the data and the model. If we were to consider the delay by itself then we would perform

§An exception to this is a 60◦ prism of BK7 glass, which is closely linear over the wavelength range of

600–1000 nm.
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the minimization by taking the partial derivative with respect to the delay, x, of the mean

squared difference, equating it to zero, and solving for the delay. If the data are represented

by the set gk and the model is fk(x) then we have

∂

∂x

[

K
∑

k=1

[gk − fk(x)]2
]

= 0, (8.73)

which can be written in full as

∂

∂x

[

K
∑

k=1

[

g2
k − 2gkfk(x) + f2

k (x)
]

]

= 0. (8.74)

In this equation only the cross term is of interest. The sum of the g2
k terms is a constant and

contributes nothing to the minimization. Furthermore, if the model fk(x) was normalized

correctly then the sum of the f 2
k (x) terms would be independent of x, and therefore would

also be a constant. We can now express the minimization of the mean square difference as

∂

∂x

[

K
∑

k=1

gkfk(x)

]

= 0, (8.75)

where the function fk(x) maximizes the sum of the cross terms. The quantity in brackets is

simply the cross-correlation between the model and the data, calculated at zero lag. Traub

et al. (1990) presented simulations of pathlength motions with peak-to-valley excursions of

1.3 µm over 1 second with |γ| = 1.0. He concluded that delay tracking should be possible at

count rates as low as 10 photons per coherence time, with a position uncertainty of ∼0.2λ.

8.5.4 Multi-Wavelength Phasor Measurements: Fast or Direct Fourier Transform

Multiple-wavelength phase measurements are complicated somewhat because you can never

modulate a pathlength to produce the same phase shift at all wavelengths. However, if you

can control the timing of your detector then it is possible to bin the data separately at each

wavelength and at the same time ignore data at wavelengths where the phase introduced

by the phase-shifter (piezo) has already changed by 1λ or more. This is the approach that

was used at the Mark III interferometer and which is currently used at PTI and NPOI.

We have then that the four bins A, B, C, and D that characterize φ as a function of

wavenumber κ are recorded in each cycle of modulation. Let us then assume that the phase

φ arises from a vacuum path-difference x, such that

φ(κ) = 2πκx, (8.76)

If we measure the quantities A, B, C, D, at M wavenumbers we can calculate

hc(κm) = A(κm)− C(κm) m = 0, ...,M − 1 (8.77)

hs(κm) = B(κm)−D(κm) m = 0, ...,M − 1 (8.78)
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so that we now have

hc(κm) ∝ cos(2πκmx), (8.79)

hs(κm) ∝ sin(2πκmx). (8.80)

We can now define the complex number series

h(κm) = hc(κm) + jhs(κm), m = 0, ...,M − 1 (8.81)

and take its discrete Fourier transform

H(x) =

M−1
∑

m=0

h(κm) exp(j2πκmx). (8.82)

The value of x that locates the peak in the power spectrum |H(x)|2 corresponds to the

group delay of the fringes.

The advantage of this method is that the modulation allows the sign of the delay to be

unambiguously determined, and because phasors are processed there is no zero-frequency

term in the power spectrum: it is straightforward to track at zero group delay. This

allows the tracking to be implemented as a zero-seeking servo, and because the mean

tracking position can be zero the astrometric error introduced by incorrectly scaling spatial

frequencies to delays is of less consequence.

The disadvantage of this brute-force approach is that you cannot weigh the data to dis-

tinguish between good and bad estimates of the sine and cosine of the phase. This ability

to weight the data is important if we know beforehand that certain pixels in our array are

noisier than others. If for example we know that all the sine and cosine measurements

estimates are noisy, we would like to have some figure-of-merit to allow us to judge the

usefulness of the derived delay estimate.†

8.5.5 Multi-Wavelength Phasor Measurements: “Optimal” Estimator

With the conventional approach to group-delay estimation, the delay is inferred from the

spatial frequency of the fringes in a channeled spectrum. It is assumed that the source is so

faint and the atmosphere so unstable that coherent integration is limited to time-scales less

than ∼2t0, and thus incoherent integration (the integration of power spectra) is used. The

phase information in the complex Fourier transform of the fringes is simply thrown away,

because it is assumed to be so corrupted by noise that it is unrecoverable.

At high light levels where a sufficient signal-to-noise is achievable in a time less than t0, the

phase of the channeled spectra can indeed be extracted. It is then possible to formulate

a group-delay estimate using this phase and thereby greatly improve the resolution of the

estimates (cf. Equations 8.70 and 8.71 yield the phase φ at the fringe frequency, p0).

†Dave Mozurkewich has pointed out that a simple but perhaps heavy-handed way of weighting the data

is to ignore data points that are suspect.



136 CHAPTER 8. PHASE AND GROUP DELAY ESTIMATION

This approach is a two-step procedure: one must first correctly identify the spatial frequency

of fringes in the channeled spectra (normal group-delay estimate); and secondly extract the

phase of those fringes and interpret it in terms of a delay. This approach is optimal in the

sense that it provides a group-delay estimate with the variance of a phase estimator. This

will only work well at high light levels and under circumstances where the dispersion is well

understood. Lawson et al. (2000) have described an implementation using phasors for use

at PTI. The approach has also been independently considered by Mozurkewich, Hummel,

and Benson for use at the NPOI (Mozurkewich, 2000). Although the method is not yet

in routine use at either interferometer—in part because of the difficulty in modeling the

changing atmospheric dispersion—it may ultimately allow noise in group-delay estimates

to be greatly reduced.

8.6 Variance of Phase and Group Delay Estimates

The derivations that follow have been previously described by Lawson et al. (2000).

8.6.1 Variance of Phase

The expected signal-to-noise ratio (SNR) and rms phase error σφ for a four-bin phase

estimate has been derived by Wyant (1975):

SNR =
2

π

√
NV 2, σφ =

π

2

1√
NV 2

, (8.83)

where V is the fringe visibility, N is the number of photons per frame, and the effects of

background and detector read noise have been ignored .

8.6.2 Variance of Group Delay

Variance of Phase-Slope Derivation

The group delay is proportional to the slope of the phase as a function of wavenumber. The

group delay is defined as
1

2π

∂φ

∂κ
, (8.84)

where κ = 1/λ. If we have several noisy samples of phase at independent wavenumbers,

the variance of the group delay is proportional to the variance of the slope of a straight line

fit to that data.

If there are M data points and the ith data point has for its coordinate xi and a variance

of σ2
i , then the variance of the slope σ2

b of a least-squares fit of a line to that set of data is

given as (Press et al. 1992, Section 15.2 “Fitting data to a straight line,” Equations 15.2.4

to 15.2.9):

σ2
b =

S

∆
, (8.85)
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where

S =
M
∑

i=1

1

σ2
i

, ∆ = S Sxx − (Sx)2, (8.86)

and

Sx =
M
∑

i=1

xi

σ2
i

, Sxx =
M
∑

i=1

x2
i

σ2
i

. (8.87)

The group delay is (1/2π) times the slope of phase with respect to wavenumber, κ = 1/λ.

The variance of the group delay is therefore proportional to the variance of the phase—as

measured at M data points across a band ∆κ. If the variance of the central-fringe phase

is σ2
φ and we assume that the light from the broadband channel is divided equally amongst

M pixels, the variance of the phase in each pixel will be Mσ2
φ. We can therefore write that

S =
1

σ2
φ

, (8.88)

Sx =
1

σ2
φ

[

1

M

M
∑

i=1

κi

]

→ 1

σ2
φ

1

∆κ

∫ κ̄+∆κ/2

κ̄−∆κ/2

κ dκ =
1

σ2
φ

κ̄, (8.89)

Sxx =
1

σ2
φ

[

1

M

M
∑

i=1

κ2
i

]

→ 1

σ2
φ

1

∆κ

∫ κ̄+∆κ/2

κ̄−∆κ/2

κ2 dκ =
1

σ2
φ

[

κ̄2 +
∆κ2

12

]

. (8.90)

We have therefore that

∆ =
1

σ4
φ

∆κ2

12
, (8.91)

and it follows from Equation 8.85 that the variance of the slope of phase with respect to

wavenumber is

σ2
b = 12

σ2
φ

∆κ2
, (8.92)

independent of the number of pixels M . The rms variations in group delay can therefore

be written

σgd =

√
12

2π

σφ

∆κ
. (8.93)

Matched Filter Derivation

One can also derive the signal-to-noise ratio for the amplitude group-delay estimator from

a simple matched-filter argument. Assume the input data are the phases as a function of

wavenumber

φ = φ0 + (κ− κ0)
∂φ

∂κ
. (8.94)

The orthonormal basis functions over the bandwidth ∆κ are respectively,

1√
∆κ

and
√

12
(κ− κ0)

(∆κ)3/2
. (8.95)
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Thus

(∆κ)1/2φ0 and
1√
12

(∆κ)3/2 ∂φ

∂κ
(8.96)

are each estimated with the same error.

8.6.3 Phase and Group Delay Variance Compared

From Equation 8.93 we now have that the ratio of standard deviations of the phase and

group delay estimates is

σφd

σgd
=

[

1

2π

σφ

κ

]

[√
12

2π

σφ

∆κ

]−1

=
1√
12

∆κ

κ
, (8.97)

where σφd is the rms path fluctuation corresponding to phase variations σφ.

As an example of the difference between phase and group-delay variations, with PTI and an

observation bandwidth of 2.0–2.4 µm and a mean observing wavelength of λ = 2.2 µm, we

have 1/∆κ = 12 µm, and can conclude that delay estimates derived from phase estimates

will have rms variations 19 times smaller those derived from group-delay estimates.

8.7 Conclusion

The methods of phase and group delay estimation are routinely used in modern stellar

interferometers to locate fringes and maintain the observations at a fixed location on the

coherence envelope. Other methods of fringe measurement, in particular coherence envelope

tracking, may also be used to estimate fringe parameters but are generally less efficient and

more labour intensive.

In this Chapter we have reviewed the various methods of phase and group delay estimation

that are currently being used in stellar interferometers, with emphasis on the techniques

used at SUSI, PTI, and NPOI.
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