
http://www.realtimelinux.org/documentation.html
Real Time Linux Documentation Project, Vol. 1, 2000
P. N. Daly and J. K̈upper, eds.
Real Time Linux Community Press

Interfacing Real-time Linux and LabVIEW

P. N. Daly
National Optical Astronomy Observatories, 950 N. Cherry Avenue, P. O. Box 26732,
Tucson AZ 85726-6732, USA
pnd@noao.edu

Abstract. This document describes the real-time fifos and shared memory interface to
LabVIEW 6i and LabVIEW 5.1.

1. License

This document and software suite are free. You can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation either version 2
of the License, or (at your option) any later version. These items are distributed in the hope that they
will be useful, butwithout any warranty. Without even the implied warranty ofmerchantabilityor
fitness for a particular purpose. See the GNU General Public License for more details. You should
have received a copy of the GNU General Public License along with this document. If not, write to
the Free Software Foundation, Inc., 675 Mass Ave, Cambridge MA 02139, USA.

2. Copyright(s)

c©2000, P. N. Daly, this document and code. All rights reserved.

3. Typographic Conventions

The conventions used in this document are described in Table1 on page1. For reasons of clarity,

Table 1.: Typographical Conventions for this Document

Markup Usage Effect

\rtlin{blue type-face} user input blue type-face
\rtlout{magenta sans-serif} machine output magenta sans-serif
\rtlnormal{black times-roman} normal text (reset) black times-roman
\rtlmargin{teal italic} margin notes teal italic

1



2 P. N. Daly

the\rtlmargin is not shown as a margin note within the table (Daly et al. 2000).

4. Introduction

This document describes a suite of VIs and the associated shared library source code for interfacing
real-time Linux to LabVIEW 6i/5.1. Code is available under both RTLinux 2.2 and RTAI 1.3. Since
the code is freely available you may modify it as you wish but please report bugs to the principal
author.

Since the way LabVIEW loads ‘code resource files’ differs under 6i and 5.1, there are two
tarballs available via anonymousftp from the web-site ftp://orion.tuc.noao.edu/pub/pnd called, not
surprisingly, lvrtl.1.1.51.tgz and lvrtl.1.1.60.tgz. Note thatonly the LabVIEW 6i code will be
developed further.

With this software you can read or write to a fifo or shared memory segment using fundamental
data types and specified array sizes. The limit on the size of data passed is either set by the fifo size
or the amount of available system memory.

4.1. Installing the Software

Once you have received a copy of the tarball unpack it into some suitable directory. Please edit the
makefilesto suit your site and build the shared library and example code in the usual way:

% make clean all install

The shared library is called lvrtl.so.1.1.51 or lvrtl.so.1.1.60, both in the /usr/lib directory, and
there are links such as liblvrtl.so pointing to the appropriate library. In this way you can easily
change systems.

Note that the real-time modules will be made for the system you have installed (RTLinux or
RTAI). We assume that you know how to load the real-time Linux modules prior to executing any
code described here and thatmbuff has been made for your particular real-time Linux kernel.

5. The Command Line Interface

Both real-time fifos and shared memory can be tested from the command line to verify your real-
time Linux installation. The modules (test rfifo and test rmem) and applications (testufifo and
testumem) can handle 9 distinct data types in either read or write mode. Note that to maintain
compatibility with LabVIEW, we have used the LabVIEW data type codes as shown in Table2 on
page3. Data types not handled arefloatExtsince Linux has no ‘16-byte double double’ represen-
tation and thecpmlxdata types since these are just a pair of floats or doubles anyway. Both sets of
modules have a frequency of 1 Hz (which you can change if you wish).

5.1. Real-time Fifos

The moduletest rfifo accepts five command line parameters and the user applicationtestufifo four
parameters as shown in Table3 on page3. Note that for the user application, one can specify the
mode as-mread, -mwriteor -mnoblock. The latter is a non-blocking read.

DRAFT



Interfacing Real-time Linux and LabVIEW 3

Table 2.: LabVIEW Data Type Codes

Data Type <datatype> Code

signed 8-bit integer int8 1 (0x01)
signed 16-bit integer int16 2 (0x02)
signed 32-bit integer int32 3 (0x03)
unsigned 8-bit integer uint8 5 (0x05)
unsigned 16-bit integer uint16 6 (0x06)
unsigned 32-bit integer uint32 7 (0x07)
single precision float float32 9 (0x09)
double precision float float64 10 (0x0A)
generic string string 48 (0x30)

Table 3.: Command Line Parameters for real-time Fifo Test Module

Real-time Parameter User Parameter Interpretation

fifo -f Fifo number
size Fifo size in bytes
dtype -d Data type in LabVIEW code
nelm -n Number of elements on fifo
mode -m Fifo access mode

DRAFT



4 P. N. Daly

For example, to put a single signed 8-bit integer onto fifo 0 from the real-time kernel and read
that value from the user application, use:

% rmmod test rfifo
% insmod test rfifo fifo=0 size=1024 dtype=1 nelm=1 mode="write"
% ./test ufifo -f0 -d1 -n1 -mread
test ufifo.c: fifo=0, dtype=1, nelm=1, mode=read
test ufifo.c: opening /dev/rtf0 read-only
test ufifo.c: opened fifo /dev/rtf0 OK
test user: received int8 (0x01) msg=1 value=1
test user: received int8 (0x01) msg=2 value=1
test user: received int8 (0x01) msg=3 value=1 OK?

And one can verify the data using thedmesgutility:

% dmesg
test rfifo.c: fifo=0, size=1024, nelm=1, dtype=1, mode=write
test rfifo.c: known data type 0x01, mode=w
test rfifo.c: created fifo, status=0
test rfifo.c: created thread, status=0
test rfifo.c: made thread periodic, status=0
test rtl: sent int8 (0x01) msg=1 value=1
test rtl: sent int8 (0x01) msg=2 value=1
test rtl: sent int8 (0x01) msg=3 value=1 OK?

A more complicated example would reverse the operation and write, say, 5 floating point num-
ber to the real-time core:

% rmmod test rfifo
% insmod test rfifo fifo=0 size=1024 dtype=9 nelm=5 mode="read"
% ./test ufifo -f0 -d9 -n5 -mwrite OK?

The data generated in this case is created in thetestdata init function and is related to data
type. It is left as an exercise for the interested reader to confirm that the data is passed correctly.

5.2. Shared Memory

The moduletest rmemand applicationtestumemaccept four command line parameters as shown
in in Table4 on page5.

For example, to put a single signed 8-bit integer into shared memory from the real-time kernel
and read that value from the user application, use:

% rmmod test rmem
% insmod test rmem sname="myint8" dtype=1 nelm=1 mode="write"
% ./test umem -smyint8 -d1 -n1 -mread
test umem.c: sname=myint8, dtype=1, nelm=1, mode=read
test umem.c: created sname, pointer=0x40014000
mbuff umem: received int8 (0x01) msg=1 value=1

DRAFT



Interfacing Real-time Linux and LabVIEW 5

Table 4.: Command Line Parameters for Shared Memory Test Module

Real-time Parameter User Parameter Interpretation

sname -s Name of memory section
dtype -d Data type in LabVIEW code
nelm -n Number of elements in memory
mode -m Memory access mode

mbuff umem: received int8 (0x01) msg=2 value=1
mbuff umem: received int8 (0x01) msg=3 value=1OK?

And one can verify the data using thedmesgutility:

% demsg
test rmem.c: sname=myint8, nelm=1, dtype=1, mode=write
test rmem.c: created sname, pointer=d0846000
test rmem.c: created thread, err=0
test rmem.c: made thread periodic, err=0
mbuff rtl: sent int8 (0x01) msg=1 value=1
mbuff rtl: sent int8 (0x01) msg=2 value=1
mbuff rtl: sent int8 (0x01) msg=3 value=1OK?

A more complicated example would reverse the operation and write, say, 5 floating point num-
ber to the real-time core:

% rmmod test rmem
% insmod test rmem sname="myfloat" dtype=9 nelm=5 mode="read"
% ./test umem -smyfloat -d9 -n5 -mwriteOK?

The data generated in this case is created in thetestdata init function and is related to data
type. It is left as an exercise for the interested reader to confirm that the data is passed correctly.

6. The LabVIEW Interface

The tarball provides 78 VIs for accessing real-time fifos and shared memory. These can be broken
down as follows:

1. rtf open.vi, mbuffopen.vi, rtf close.vi, mbuff close.vi. These are the analogous open and
close calls forrtf andmbuff packages;

DRAFT



6 P. N. Daly

2. rtf get<datatype>.vi and mbuffget<datatype>.vi. These are theget operations for the
data types specified in column 2 of Table2 on page3. For example, to get a signed 8-bit
integer off a fifo, the appropriate VI isrtf get int8.vi.

3. rtf put <datatype>.vi andmbuffput <datatype>.vi. These are theput operations for the
data types specified in column 2 of Table2 on page3. For example, to put a single precision
float into shared memory, the appropriate VI ismbuffput float32.vi.

4. rtf read<datatype>.vi andmbuff read<datatype>.vi. These VIs bundle the open, read-
loop and close VIs into an example for each of the data types.

5. rtf write <datatype>.vi andmbuffwrite <datatype>.vi. These VIs bundle the open, write-
loop and close VIs into an example for each of the data types.

6. test lfifo.vi andtest lmem.vi. These are the VIs that handle all data types for testing purposes.
Make sure the front panel input parameters match those invoked by the real-time module
insmodcommand or memory corruption can occur. These VIs areonly available with the
LabVIEW 6i tarball.

Note that thertf put string.vi andmbuffput string.vi are the only two that add a NULL byte
before the data transfer. The real-time core must be set up to accept the NULL byte also (just as
the test code is).

6.1. Real-time Fifos

The rtf open.virequires a fifo name and access mode as input parameters and returns the file de-
scriptor of the opened fifo or a negative number on error. This error should be trapped in G-code.

Thertf close.viaccepts a file descriptor input, closes the file and returns the status.
Thertf get<datatype>.vi accepts the file descriptor input and a number of elements. It reads

the fifo for the requested number of elements of the known data type and returns the file descriptor,
a status value (-1 on error or number of bytes read on success) and the data in an array of the
appropriate data type. Note that the data array isdynamically re-sizedto hold all the incoming data
so that the VI can hold a single value or a complete array of values. To re-iterate, the return value
on success is the number ofbytesread from the fifo andnot the number of elements read.

Symmetrically, thertf put <datatype>.vi accepts the file descriptor input, the number of data
elements and an array of values of the appropriate data type and write them to the fifo. It returns
the file descriptor and a status value (-1 on error, number of bytes written on success) which should
be checked in G-code. Note that an input of 0 into theNumber of Elementscontrol isignoredand
the whole data set is sent. For thertf put string.vi a NULL terminating byte is also added to the
data transfer.

For example, let us write 5 single precision floating point numbers from the kernel to user
space. For this we can use the bundled uprtf read float32.vi. The (LabVIEW 6i) front panel for
this example is shown in Figure1 on page7 and the G-code diagram is in Figure2 on page7 As
we can see, the G-code traps errors returned by thertf open.viandrtf get float32.vi.

To execute this example from LabVIEW, first insert the (test) module:

% rmmod test rfifo
% insmod test rfifo fifo=0 size=1024 dtype=9 nelm=5 mode="write" OK?

DRAFT



Interfacing Real-time Linux and LabVIEW 7

Figure 1.: rtf readfloat32.vi Front Panel

Figure 2.: rtf readfloat32.vi G-code Diagram

DRAFT



8 P. N. Daly

Figure 3.: rtf readint8 noblock.vi Front Panel

Then run the VI in the usual way. The values in the output array should become 9.00, 18.00,
27.00, 36.00 and 45.00 respectively. Theput or write VIs do the opposite of thegetandreadVIs
respectively.

Non-Blocking Reads We provide no explicit traps for non-blocking reads but the library accepts
that fifos can be opened in such a way. Such reads, typically, return a negative number when no
data is available. In Figure3 on page8 we show an example of a VI for a non-blocking read of a
single 8-bit integer from fifo 0. The associated G-code diagram is in Figure4 on page9 Note how
we trap the return and indicate data is ready when the return value is positive.

We can run this VI after inserting thetest rfifo module:

% rmmod test rfifo
% insmod test rfifo fifo=0 size=1024 dtype=1 nelm=1 mode="write" OK?

If you try this, note that theData Availableflag beats with a 1 Hz frequency in synchronization
with the real-time module.

6.2. Shared Memory

Thembuffopen.virequires a section name, data type and number of elements (of the given type).
The memory is allocated and the pointer to the memory is returned as a value into the integer
Memory Pointerargument (not the address) since LabVIEW cannot return pointersper se. If
the allocation fails, a negative number is returned inError Out otherwise it is zero. Note that
the internal pointer is declared as astatic variable creating a possible race condition. This effect

DRAFT



Interfacing Real-time Linux and LabVIEW 9

Figure 4.: rtf readint8 noblock.vi G-code Diagram

is mitigated by making the VI re-entrant and requiring that calls tombuffopen.viare sequential
wherever possible.

All other VIs, decode the input integer address and cast it to a pointer of the correct type so
that the software knows the start address of the memory area. For thembuff close.vi, the memory
section name and the address are the only inputs and the memory is released viambuff free. Since
this function returns avoid, no status check is possible sombuff close.vialwats returns 0.

The mbuffget<datatype>.vi accepts the address input and decodes it for the appropriate
data type. It also accepts two other inputs: the offset from the start of the memory section and the
number of data elements to read from the memory section. It returns a status (-1 on error, number
of bytesread on success), the input address and the data. The data array is dynamically re-sized to
accept all the values read.

Symmetrically, thembuffput <datatype>.vi accepts the encoded address input, the offset, the
number of data elements and an array of values of the appropriate data type and writes them to the
memory section. Let us be clear as to what it writes and where: the input data array is read from 0
up todelmvalues (the number of data elements) and those values are written to the shared memory
section starting at the offset from the base input address. Note that there is no checking the memory
section upper boundary so putting values at a high offset where the number of data elements to put
exceeds the end of the memory section could result in memory corruption. The VI returns the file
descriptor and a status value (-1 on error, number ofbyteswritten on success) which should be
checked in G-code. Note that an input of 0 into theNumber of Elementscontrol isignoredand the
whole data set is sent. For thembuffput string.vi a NULL terminating byte is also added to the
data transfer.

For example, let us write a string to the real-time core. For this we can use the bundled up
mbuffwrite string.vi. The front panel for this example is shown in Figure5 on page10 and the
G-code diagram is in Figure6 on page11 As we can see, the G-code traps errors returned by the
mbuffopen.viandmbuffput string.vi.

DRAFT



10 P. N. Daly

Figure 5.: mbuffwrite string.vi Front Panel

DRAFT



Interfacing Real-time Linux and LabVIEW 11

Figure 6.: mbuffwrite string.vi G-code Diagram

To execute this example from LabVIEW, first insert the (test) module:

% rmmod test rmem
% insmod test rmem sname="mystring" dtype=48 nelm=50 mode="read"OK?

Then run the VI in the usual way. Although the input data string is ‘This is a test of LabVIEW
and real-time Linux via lvrtl’, only the first 25 characters are sent to the real-time core. Thus the
real-time core gets the string ‘This is a test of LabVIEW’ only. If we increment theOffset from
Array Origin, we move this substring along in the memory buffer. This can be verified withdmesg.

Theput or write VIs do the opposite of thegetandreadVIs respectively.

7. Structured Data

The VIs described above are generic inasmuch as they handle fundamental data types and dynam-
ically re-size arrays to handle multi-valued data. The question remains, though, as to structured
data. Clearly, if the structure contains elements of a single data type, this is handled by the appro-
priate data type VI, specifying the number of elements in the structure as the number of elements
to get off the fifo. What, though, about disimilar data types in a structure? Consider the following
structure which is to be put on a fifo:

struct mystruc {
int myint;
float myfloat;
char mychar[40];
}

DRAFT



12 P. N. Daly

There are two approaches. First, one could write one’s own VI and add code to the shared
library. We believe that there is enough detail in the documentation (Other 2000) and the examples
given with this software to do this.

Alternatively, one could wire together the three VIsrtf get int32.vi, rtf get float32.vi and
rtf get string.viwith appropriate inputs. Clearly, this requires three reads of the fifo to completely
obtain the structured data.

8. Document Revision History

23 August 2000, PND: Original version.
29 August 2000, PND: Updated to reflect 5.1 differences and non-blocking read VI.

Acknowledgments. Linux is a registered trade mark of Linus Torvalds. LabVIEW is a trade
mark of National Instruments Corporation.

References

Daly, P. N., Mahoney, T. J., and Küpper, J. 2000, ‘RTLDOC LATEX 2ε Template and Style File’
in Real Time Linux Documentation Project, 1, P. N. Daly and J. K̈upper, eds., Real Time
Linux Community Press

Other, A. N. 2000,Using External Code in LabVIEW, July 2000 Edition, National Instruments
Corporation, Part Number 370109A-01

DRAFT


	License
	Copyright(s)
	Typographic Conventions
	Introduction
	Installing the Software

	The Command Line Interface
	Real-time Fifos
	Shared Memory

	The LabVIEW Interface
	Real-time Fifos
	Shared Memory

	Structured Data
	Document Revision History
	References

